Chapman & Hall/CRC Data Science Series
About the Book Series
Reflecting the interdisciplinary nature of the field, this new book series brings together researchers, practitioners, and instructors from statistics, computer science, machine learning, and analytics. The series will publish cutting-edge research, industry applications, and textbooks in data science.
Features:
- Presents the latest research and applications in the field, including new statistical and computational techniques
- Covers a broad range of interdisciplinary topics
- Provides guidance on the use of software for data science, including R, Python, and Julia
- Includes both introductory and advanced material for students and professionals
- Presents concepts while assuming minimal theoretical background
The scope of the series is broad, including titles in machine learning, pattern recognition, predictive analytics, business analytics, visualization, programming, software, learning analytics, data collection and wrangling, interactive graphics, reproducible research, and more. The inclusion of examples, applications, and code implementation is essential.
Please Contact Us if you have an idea for a book for the series.
Probability and Statistics for Data Science: Math + R + Data
1st Edition
By Norman Matloff
June 20, 2019
Probability and Statistics for Data Science: Math + R + Data covers "math stat"—distributions, expected value, estimation etc.—but takes the phrase "Data Science" in the title quite seriously: * Real datasets are used extensively. * All data analysis is supported by R coding. * Includes ...






